CodeLAB
на главную карта сайта обратная связь

Популярные задачи:

#Вычисление значения полинома. (63328 hits)
#Рисование куба. (60876 hits)
#Посчитать количество пар чисел (number of equal pairs). (6833 hits)
#Динамическое изменение цвета полоски прокрутки в IE5.5 и выше. (31686 hits)
#Косинус. (40755 hits)
#Рисование тора. (35907 hits)
#Вращение 3D объекта. (36888 hits)
#Рисование прямоугольника. (32123 hits)
#Преобразование целых чисел в битовый массив. (38658 hits)
#Сортировка Шелла, обший принцип. (147198 hits)
#Шейкер-сортировка. (72608 hits)
#Поверхностное клонирование. (28477 hits)
#Обновление нескольких записей таблицы. (33355 hits)
#Валидация, динамическая проверка заполнения html форм. (210942 hits)
#Заполнение 2-го выпадающего списка (select) в соответствии с выбором в первом. (47227 hits)
#Арктангенс. (46574 hits)
#Динамическое формирование выпадающего списка. (53094 hits)
#Выборка конкретной записи из таблицы. (33676 hits)
#Сортировка Шелла, оптимальный выбор приращений. (197413 hits)
#Код. (182478 hits)


Главная >> Каталог задач >> Сортировка >> Поразрядная Сортировка >>

Поразрядная сортировка массива подсчетом

Aвтор:
Дата:
Просмотров: 134587
реализации(C++: 2шт...) +добавить

[Если вы еще не знакомы с поразрядной сортировкой как таковой, то быстрей прочитайте задачу поразрядная сортировка, общий принцип]

Формулировка

В классической поразрядной сортировке на каждом проходе, т.е. в пределах каждого разряда - элементы сортировались путем буквального разделения по каждому разряду, т.е. мы получали последовательности элементов, в каждой из которых содержались т.н. "одинаковые" элементы (идиентичны по конкретному текущему разряду). Очевидно, что для того, чтобы получить единую последовательность элементов отсортированных в пределах одного этого разряда - надо просто один за другой, по-порядку соединить все эти последовательности между собой.

Подход, о котором идет речь здесь - отличается тем, что на каждом проходе элементы исходной последовательности сортируются по конкретному текущему разряду не с помощью разделения по карманам, а с помощью подсчета элементов, которые меньше индекса некоторого дополнительного массива счетчиков. Т.е. никаких уже 2 этапов: распределения и сборки. Теперь можно сказать - только подсчет и вставка элементов в нужное место.

Подробнее. Те же основные итерации по каждому разряду максимально-разрядного числа, от младшего к старшему разряду. В пределах каждой итерации - составляем последовательность(назовем ее positions) из значений разрядов каждого элемента нашей последовательности, чтобы только с этими значениями на данной итерации и работать (сами числа нам не нужны конечно - только текущие их разряды). Далее составляем искомый массив счетчиков - count, размером range. Каждое его значение будет определять количество элементов из positions, которые меньше индекса данного элемента массива count. После того, как такой массив будет составлен - мы будем знать где на самом деле на данной итерации должен находится каждый элемент из positions, чтобы последний был отсортирован, поскольку для каждого элемента positions мы знаем количество элементов меньших чем он и поэтому встравляем его на соответствующее место.

Пример.
Пусть имеем исходную последовательность из 10-ти элементов source = {3, 1, 3, 9, 1, 4, 3, 2, 8, 3}.
Т.о. range = 10, width = 1, n = 10.
Составляем массив count размера range, т.е. в данном случае - 10. Пока инициируем его нулями. Далее проходимся по source от начала и до конца и для каждого его значения - просто увеличиваем(инкрементируем) соответствующий элемент count, что-то вроде:

for i = 0 to n-1
count[ source[i] ]++

Получаем: count = {0 2 1 4 1 0 0 0 1 1}

Далее проходимся по count и для каждого элемента считаем сумму предыдущих:

count[i] = count[0] + count[1] + ... + count[i-1]

В нашем случае получим: count = {0 0 2 3 7 8 8 8 8 9} Т.е. каждый count[i] - это количество элементов, меньших i. Это и является ключом метода. Теперь мы проходимся по всем source[i] и зная количество элементов меньших source[i]: count[ source[i] ](=K например) - просто вставляем source[i] на следующую позицию: K+1.

На этом, по-сути, сортировка для данного примера и заканчивается, т.е. имеем здесь только одну главную итерацию алгоритма, т.к. максимальное количество разрядов(width) = 1. Если бы в исходном массиве были бы двухзначные числа(56, 35), то имел бы место еще один проход, который бы отличался только тем, что на нем рассматривался бы еще и второй, более старший разряд элементов(ключей).

 псевдокод: поразрядная сортировка подсчетом, общий алгоритм  ссылка
  1. // Наш исходный сортируемый массив
  2. x = {..<int> elements to be sorted...}
  3.  
  4. // Вспомогательная переменная
  5. rangepow = 1
  6.  
  7. // Вспомогательный массив,
  8. // копирующий исходный X
  9. source = array<int>[n] filled 0
  10.  
  11. for step = 0 to width-1
  12.  
  13. // массив подсчета
  14. count = array<int>[range] filled 0
  15.  
  16. // Копируем в source содержимое X
  17. // на текущей итерации
  18. source[] = copy of x[]
  19.  
  20. // Получаем в count пока просто
  21. // количества текущих разрядов
  22. for i = 0 to n-1
  23. // d - это значение текущего разряда
  24. // для каждого нашего числа
  25. d = (source[i] / rangepow) % range
  26. count[ d ]++
  27.  
  28. // Завершаем формирование count, т.е. получаем
  29. // количество элементов менших индекса
  30. summNum = 0 // вспомогательная переменная
  31. for i = 0 to range-1
  32. tmp = count[i]
  33. count[i] = summNum
  34. summNum += tmp
  35.  
  36.  
  37. // Завершающий этап "вставка"
  38. for i = 0 to n-1
  39. d = (source[i] / rangepow) % range;
  40. x[ count[d] ] = source[i];
  41. count[d]++; // Очень важная конструкция:
  42. // для случая посторяющихся чисел.
  43. }
  44. rangepow *= range
  45.  


Т.о. получаем, скорость ~ О(width*(2n + range)), память: ~(2n + range).

Оптимизация

Формирование ключевых массивов count можно начать заранее. Т.е. до запуска алгоритма, пробежавшись по нашему исходному массиву x - можно "наполовину" рассчитать все массивы count для каждого разряда, потому что неважно как расположены числа: количество одинаковых чисел по разрядам не меняется на каждом проходе. Поэтому если до основного цикла рассчитать все эти массивы count - на каждом проходе будет делаться лишь (n + range) операций, а не (2*n + range):

 псевдокод: поразрядная сортировка подсчетом, оптимизация  ссылка
  1. // Наш исходный сортируемый массив
  2. x = {..<int> elements to be sorted...}
  3.  
  4. // Вспомогательный массив,
  5. // копирующий исходный X
  6. source = array<int>[n] filled 0
  7.  
  8. // инициируем count пока нулями
  9. // и кстати - теперь он двухмерный!
  10. count = array<int>[width][n] filled 0
  11.  
  12. // рассчитываем количество чисел с
  13. // одинаковыми разрядами для всех значений
  14. // разрядов
  15. for i = 0 to n-1
  16. rangepow = 1
  17. for step = 0 to width-1
  18. d = (x[i] / rangepow) % range
  19. count[step][ d ]++;
  20.  
  21. // Вспомогательная переменная
  22. rangepow = 1
  23.  
  24. for step = 0 to width-1
  25.  
  26. // Копируем в source содержимое X
  27. // на текущей итерации
  28. source[] = copy of x[]
  29.  
  30. // Завершаем формирование count, т.е. получаем
  31. // количество элементов менших индекса
  32. summNum = 0 // вспомогательная переменная
  33. for i = 0 to range-1
  34. tmp = count[step][i]
  35. count[step][i] = summNum
  36. summNum += tmp
  37.  
  38.  
  39. // Завершающий этап "вставка"
  40. for i = 0 to n-1
  41. d = (source[i] / rangepow) % range
  42. x[ count[step][d] ] = source[i]
  43. count[step][d]++ // Очень важная конструкция:
  44. // для случая посторяющихся чисел.
  45. }
  46. rangepow *= range
  47.  


Т.о. получаем, сокращение скорости до: ~ O((width + 1)*(n + range)), но увеличение памяти до: ~(2n + width*range). Глядя на эту новую пропорцию скорости - выигрышь в производительности представляется не очень очевидным, но чисто логически рассуждая можно прийти к выводу, что общее количество проходов по исходному массиву x размера n - сокращается: с ~ 2*width*n, до (width + 1)*n.

Сравнительные диаграммы

Представляя на графиках производительности обеих алгоритмов(Graph1) и их отношение(т.е. насколько оптимизированная версия быстрее, Graph2) в зависимости от размера массива - n (при width=2, range=10), получим:

Как видим, наибольший выигрышь в скорости достигается на больших размерностях массива(>200). На малых же размерностях данная версия менее производительна(Graph3):

Точка перелома(n=10 в данном случае) очевидно определяется значениями width и range.

Что же касается увеличения расхода памяти, то при тех же условиях получим:

Т.е. на некоторую постоянную величину(определяющуюся значениями width и range) памяти будет расходоваться больше.

Реализации:

C++(2)   +добавить

1) неоптимизированная версия на C++, code #10[автор:this]
2) оптимизированная версия на C++, code #11[автор:this]